
Test We Must!
In the lifecycle of the development process, there are few activities
that I find less interesting than testing. Of all the skills that a
developer has to have to write good software, sometimes I come up
short when it comes time to find the bugs in a module of an
application!

What is most frustrating is that 4D allows us to create superb
programs very quickly and then we have to sit down and “waste”
time looking for mistakes in our software!

But test we must for, without fail, if we release a segment of code
that isn’t thoroughly tested, that’s the one that gives us the runtime
error during the demo.

In addition to test plans and worksheets that we have developed to
make testing easier, one simple addition to our process makes
testing a little less onerous.

The method explained in this article accomplishes two important
tasks—it helps us test our software more thoroughly and it helps
reduce the time needed to test.

One of the major causes for failure to catch errors during the
testing phase is lack of a sufficiently large amount of test data. In
addition, when limited amounts of test data are created there is a
good chance that the values in the data will not be sufficiently
varied to test the quality of our defensive programming.

We can use the power of the programming language in 4th Dimension
to quickly generate a large amount of test data that contains the
wide variety of values required to test boundary checking.

How is It Done?
The first order of business is to create a large number of records for
a specific file. The obvious solution is to use a simple For…End for
loop and, for each pass of the loop, call Create record, assign the value,
and then call Save record.

What is not quite so obvious is how to create records that contain
the diversity of values that are required for testing. The key to this
is to use a procedure that changes the values that are assigned to
the records. This procedure must operate quickly, since we will
want to be a to generate data in an interpreted database, and it must
allow the developer to set minimum and maximum values for as
many data types as possible.

The current version of 4th Dimension supports nine data types
including alpha, text, real, integer, long integer, date, time, boolean,
and picture fields. By using a procedure called “Make_Random”, we
can easily generate random values for all field types.

“Make_Random” is passed two parameters. The first value is the
minimum value, while the second value is the maximum value. The
value passed back by the Make_Random function is a random integer
value from within those limits.

Case of
 : (◊vonR)
 `Procedure: Make_Random
 `April 3, 1992
 `Douglas von Roeder
 `Desc: Returns a random number based on the values passed in.
 `Adapted from Foresight Technology's Online Help example

 `$1 is the lowest value in the range
 `$2 is the highest value in the range

 `Eg.: Make_Random(1;10)
End case
C_INTEGER(${0})
$0:=Random %($2-$1+1)+$1

Most of the data types make it easy to generate test data. When
working with real, integer, long integer, date, and time fields all
that is needed is to determine the minimum and maximum values and
then pass those values to Make_Random. The integer returned from
Make_Random can then be assigned to the field.

Time values are handled in a slightly different manner.
4th Dimension allows you to add and subtract time values but you
must remember that 4th Dimension deals with time in seconds. To
modify a time value by one minute, simply add (or subtract) 60*60
to that value.

The next step up the ladder of complexity is to create data for
Boolean fields. To derive a Boolean value, pass a minimum value of 1
and a maximum value 2. The values that are returned can be tested to
be equal to either a “1” or a “2”. Since the result of this test will be
either True or False , we can capture a Boolean value.

String and text values can be generated as random values.
Unfortunately, a randomly generated string of alpha characters has
makes it difficult to verify. Instead of dealing with test values such
as “kjjksdfajb” and “iohb wefB” it is easier to simply use a base
value and then add a suffix that allows the tester to validate the
entry.

The final data type, picture data, can be randomly assigned from a
picture array. For example, if you load a picture array with 10 values
you can pass 1 as the minimum value and 10 as the maximum value
and use the random value to reference an element in the picture
array.

A Sample Procedure
The procedure below shows how we can take advantage of
Make_Random. The procedure “Crt_Inv_Recs” is shown below:

Case of
 : (◊vonR)
 `© 1993 SE Software, Inc.
 `Procedure: Crt_Inv_Recs
 `July 20, 1993
 `Douglas von Roeder

 `Creates data for testing purposes
End case
C_LONGINT($i;$Reps;$NumEmps;$NumCats)
$Reps:=250

 `1 Init the arrays that will be used as pick lists
ARRAY STRING (40;aEmpIDs;0)
ALL RECORDS ([Employees])
SELECTION TO ARRAY ([Employees]Entered_by_ID;aEmpIDs)
$NumEmps:=Size of array (aEmpIDs) `1 Used to create entries in [Employees]ID

LIST TO ARRAY ("Inventory Categories";asInvCats)
$NumCats:=Size of array (asInvCats) `1 Used to create entries in
[Inventory]Category

 `ThermoInit($Reps;"Creating Inventory records…";"") `1 May as well watch
 `«_something_
For ($i;1;$Reps)
 CREATE RECORD ([Inventory])
 [Inventory]ID:=Sequence number ([Inventory])
 [Inventory]Buy:=Make_Random (25;35000)

 `1 Add a value from the array
 [Inventory]Category:=asInvCats{Make_Random (1;$NumCats)}
 [Inventory]SKU:=String (1234+$i)
 [Inventory]Comment_1:="Comment for SKU "+[Inventory]SKU

 `1 Add between 1 and 100 days to the [Inventory]Date_Entered
 [Inventory]Date_Entered:=!01/01/93!+Make_Random (1;100)
 [Inventory]Desc_1:="Desc for SKU "+[Inventory]SKU

 `1 Add a value from the array
 [Inventory]Entered_by_ID:=aEmpIDs{Make_Random (1;$NumEmps)}
 [Inventory]Qty_OH:=Make_Random (0;35)

 `1 True/false

 [Inventory]Returnable:=((Make_Random (1;2))=2)

 `1 Add 5 to 20 %
 [Inventory]Sell:=[Inventory]Buy*(1+(Make_Random (5;20)/100))

 `1 Add 1 to 6 %
 [Inventory]SRP:=[Inventory]Sell*(1+(Make_Random (1;6)/100))

 `1 Add between 1 second and 4 hours
 [Inventory]Time_Entered:=Current time +(Make_Random (1;60*60*4))

 [Inventory]Vendor_IDCode:=String (Make_Random (1;99))
 [Inventory]Weight:=Make_Random (2;15)
 `ThermoUpdate ($i)
 SAVE RECORD([Inventory])
End for
 `ThermoClose
UNLOAD RECORD ([Inventory])

In this example, 4th Dimension will generate records to test a
module that handles inventory records. In addition to working with
different values, we had to accommodate different types of values
including string, cost, weight, time, and date data. Thanks to a
simple procedure such as “Make_Random” we were able to hundreds
of test records in a manner of minutes.

This article has demonstrated a simple way to generate large
volumes of test data for alphanumeric, boolean, date, and numeric
fields. In addition, by changing just two values, you can control the
upper and lower limits to ensure that boundary conditions are
adequately tested.

Happy testing. Now, back to something a little more interesting!

